跳到主要内容

第6章 选择宇宙

第6章 选择宇宙

根据中非波桑歌人的传说,太初只有黑暗,水和伟大的天神奔巴。一天,奔巴胃病发作,呕吐出太阳。一会儿太阳灼干了部分水,留下大地。可是奔巴仍然胃痛不止,又吐出来月亮和星辰,然后吐出一些动物:豹,鳄鱼,乌龟,.....最后是人。墨西哥和中美洲的玛雅人描述在创生之前的类似时期。那时存在的一切是海洋,天空和造物主。在玛雅传说中,造物主创造了土地,山岳,树林和大多数动物,但它不快活,因为没有赞美者。由于动物不能说话,这样他决定创造人类。首先他用泥土做人,但他们只能胡说。它将他们溶掉,再试,这回从木头塑造出人来。那些人很笨。他决定将其毁灭,但他们逃进树林,逃窜途中受到一些伤害被保留下来,创生了当今知道的猴子。那次惨败之后,最后造物主找到了一个方案,从白色和黄色玉米里造出人类。我们今天用玉米制造酒精,然而迄今还未达到造物主制造喝它的人的本领。

诸如此类的创生古代神话都试图回答我们在本书想要解决的问题:为何存在一个宇宙。为何宇宙如此这般?自古希腊始的多少世纪里,我们回答这类问题的能力逐渐增强,而在上个世纪,这种能力极度发展。有前面的章节作背景准备,现在我们要对这些问题给予可能的答案。

甚至在更早时有件事可说是很明显的,要么宇宙是一个非常近的创生物,要么人类只在宇宙历史中存在了一小部分的时间。那是因为人们在知识和技术上如此迅速地改善,如果人类在周围存在了几百万年,那么人类要更先进得多。

根据旧约,上帝在创生之后仅六天就创生了亚当和夏娃。全爱尔兰在1625—1656年间的大主教厄谢尔主教甚至把世界起源更精确地设定于公元前4004年10月27日的早上九点。而我们采用不同观点:人类是近代创生的,然而宇宙本身的起始在大约137亿年前,要早得多。

宇宙具有开端的第一个真正的科学证据是1920年代出现的。正如我们在第三章说过的,那时大多数科学家信仰一直那样存在的静态宇宙。与此矛盾的证据是间接的,那是基于埃德温哈勃在加利福尼亚帕沙迪那上的威尔逊山利用100英寸望远镜进行的观测。哈勃分析了邻近的所有星系发射的光谱之后,确定几乎所有的星系都远离我们而去,而且它们离得越远,就运动得越快。1929年,他发表了一个将退行速度和它们离开我们距离相关的定律,并且得出结论宇宙正在膨胀。如果这是真的,那么宇宙在过去就应该较小。事实上,如果我们延伸到遥远的过去,所有宇宙中的物质和能量就应集中在具有不能想象的密度和温度的非常微小的区域,而且如果我们回溯到足够早,那么就存在一个一切启始的瞬间——我们现在称这个事件为大爆炸。

宇宙正在膨胀的观念有些微妙。例如,我们不是说宇宙以这种方式膨胀,譬如,人们可以把墙打掉,在以前曾经的大橡树位置装修一个洗澡间。说的更准确些,是宇宙中的任何两点之间的距离在变大,而非空间在延续其自身。1930年代这种观念中在大量的争议中出现。而最好想象它的方法之一仍然是剑桥大学天文学家阿瑟爱丁顿在1931年清楚地阐述的隐喻。爱丁顿把宇宙想象成一个膨胀的气球的表面,而所有星系为那个表面上的点。这个图像清晰地阐释了为何远处的的星系比近处的退行的较快。例如,如果气球的半径每小时加倍,那么在这气球上的任何两个星系之间的距离每小时会加倍。如果两个星系在某一时刻相距1英寸,1小时后它们就会相距2英寸,而它们显得以每小时1英寸的速率相互运动离开。但是如果它们开始是离开2英寸,一小时后它们就分开4英寸,而显得是以每小时2英寸的速度相互运动离开。这正是哈勃的发现:星系越远,它离开我们运动得越快。

空间的膨胀不影响诸如星系,恒星,苹果,原子或其它由于某类力束缚在一起的物体的尺度,意识到这一点很重要。例如,如果我们在气球上圈出一个星系团,在气球膨胀时,那个圆圈并不膨胀。毋宁说,因为星系受引力的束缚,当气球膨胀时圆圈和在其中的星系会保持尺度和外形。因为只有当我们测量的工具具有固定尺寸时,我们才能检查膨胀,所以这一点是重要的。如果万物都自由膨胀,那么我们,我们的标准,我们的实验室等就都会按比例膨胀,而我们就不会觉察到有任何不同了。

对于爱因斯坦,宇宙在膨胀是一道新闻。然而基于爱因斯坦自己的方程产生的理论根据,在比哈勃论文早几年,星系互相离开运动的可能性就被提出了。1922年,俄国物理学家兼数学家亚历山大弗里德曼研究了基于两个可使数学极度简化的假定之上的一个宇宙模型:宇宙在任何方向都显得相同,以及从所有观察点看也是这样。我们知道弗里德曼第一假定不完全真实——还好宇宙并非处处一致!如果我们往上凝视一个方向,我们也许看到太阳;在另一方向是月亮,或者是一群迁徙的吸血鬼蝙蝠。然而,在甚至比星系距离更大得多得多的尺度下看,宇宙在每一方向的确显得大致相同。这类似像往下看森林。如果你处于足够近处,你能辨别出单个叶子,或至少树以及之间的空间。然而,如果你处于相当高的地方,把你拇指伸出就遮盖3平方英里的树,森林就显得是均匀的绿荫。我们会说,森林在那个尺度上一致的。

基于自己的假定,弗里德曼能够发现爱因斯坦的一个解,在该解中,宇宙以哈勃之后不久发现是真的方式膨胀。特别是,弗利德曼的宇宙模型从零尺度起始,而且膨胀直至引力吸引使之缓慢,并最终使之向自身塌缩。(结果,爱因斯坦方程还有两种其它类型的解也满足弗里德曼模型的假设,其中一种对应于永远继续膨胀的宇宙,尽管它会缓慢下来一些,而另一种其膨胀率向零减缓,但永远不会到达零。)弗里德曼完成这个研究之后没几年即去世,直至哈勃发现之后,大多数人才知道弗里德曼的思想。然而1927年,一位名为乔治勒梅特的物理学教授和罗马天主教牧师提出类似的思想:如果你沿着宇宙历史回溯到过去,它会变得越来越小直到一个创生时刻——那就是今天我们称作大爆炸的时刻。

并非人人都喜欢大爆炸的图象。事实上,“大爆炸”术语是1949年剑桥天体物理学家弗雷德霍伊尔创造的。他深信宇宙无限膨胀,故意利用这个术语嘲弄。1965年支持这个观点的最早直接观测才出现,人们发现在整个太空存在着暗淡的微波背景。这个宇宙微波背景辐射,或cmbr是和你的微波炉中的一样,只不过微弱得多。你把电视转到一个不用的频道就能看到cmbr——你在屏幕上看到雪花的百分之几是由它引起的。这个辐射是两位贝尔实验室的科学家在努力消除从他们微波天线来的这种干扰时偶然发现的。他们起初以为这种干扰也许是从栖息在天线中的鸽子粪引起的,然而结果是他们的问题拥有更有趣的起源——cmbr是指大爆炸后很短的时间存在过的非常热非常紧密致的早期宇宙遗留下来的辐射。随着宇宙膨胀,它冷却下来直至辐射变成仅仅是我们现在观察到的暗淡的残余。现在这些微波只能将你的食物加热到大约摄氏-270度——绝对零上3度,对于爆玉米花没多大用处。

天文学家还发现了支持一个热的微小的早期宇宙的大爆炸图象的其它特征标志。例如,在第一分钟左右,宇宙会比典型恒星的中心还热。在那个时期,整个宇宙就像一个核聚变反应堆那样行为。当宇宙足够膨胀并冷却,该反应就停止了,然而理论预言这会遗留一个由氢为主要成分的宇宙,但还有大约百分之23左右的氦,以及微量的锂(所有的更重的元素是后来在恒星中形成的)。其计算和我们观察到氦,氢和锂的数量非常一致。

氦丰度以及cmbr的测量为极早期宇宙的大爆炸图象提供了令人信服的有利证据,然而尽管人们可将大爆炸图象认为是早期的一个成功的描述,严格地接受大爆炸,也就是说,认为爱因斯坦理论提供了宇宙起源的真正图象却是错误的。那是因为广义相对论预言在时间中存在一点,那时宇宙温度,密度,和曲率都是无限的,这是数学家称之为奇点的情形。对于物理学家而言,这表明在那点爱因斯坦理论崩溃了,因此不能用之预言宇宙为何启始,只能用之预言之后它如何演化。因而尽管我们可以使用广义相对论的方程和我们对天空的观测去获悉极年轻时代的宇宙,但将大爆炸图象一直延伸至启始却是不正确的。

我们将会很快回到宇宙创生问题,但首先要讲一下有关膨胀的最早期的相。物理学家称之为暴胀。除非你在津巴布韦住过,那里通货膨胀最近超过二百万倍,这个术语也许听起来不那么爆炸性。然而,甚至根据保守的估计,在这个宇宙暴胀期间,宇宙在0.00000000000000000000000000000000001秒膨胀了1,000,000,000,000,000,000,000,000,000,000倍。它仿佛是直径1厘米的硬币忽然爆炸到银河系宽度的一千万倍。这似乎违反了相对论,它要求没有任何东西可比光运动得更快,但那个速度极限不能适用于空间本身的膨胀。

这种暴胀的事件也许发生过的思想首先是在1980年代提出的,那是基于超出爱因斯坦广义相对论,并注意到量子论方面的考虑。由于我们没有完备的量子引力论,其细节还在研究之中,因此物理学家还不清楚暴胀确切地如何发生。然而根据理论,由暴胀引起的膨胀不会是完全均匀的,正如传统的大爆炸图象预言的那样。这些无规律性在不同方向的cmbr的温度上会产生微小的变化。这种变化太小了以至于在1960年代未被观测到,然而1992年被nasa的cobe卫星首先以及后来它的后继者2001年发射的wmap卫星测量到。因而,我们现在确信暴胀的确真的发生过。

出乎意料的是,尽管cmbr中的微小变化是暴胀的证据,cmbr的温度几乎完美的均匀性却是暴胀是重要概念的一个原因。如果你使物体的一部分比它的周围更热,然后等待,这热点会变较冷,而周围变得较暖,直到与物体的温度一致。类似地,人们可以预料宇宙最终会具有一致的温度。但是这个过程花费时间,而如果暴胀没有发生过,假定这种热传输的速度受光速的限制,则在宇宙的历史中就不会有足够的时间让热在相隔很开的区域变均匀。一个非常快速(比光速快得多)的膨胀时期可以纠正这个问题,因为那就存在足够的时间在极其微小的前暴胀早期宇宙使均匀化发生。

暴胀至少在一个意义上解释了大爆炸中的爆炸,即暴胀至少在它所代表的膨胀比由广义相对论的传统大爆炸在暴胀发生的时间段里的膨胀远为极端。问题在于,为了我们的暴胀理论模型能有效运行,宇宙的初始状必须以一种非常特殊和高度不可信的方式被设定。这样,传统的暴胀理论解决了一族问题,却产生了另一个问题——需要一个非常特别的初始态,那个零时间的问题在我们即将描述的宇宙创生理论中被消除。

由于我们不能利用爱因斯坦的广义相对论来描述创生,如果我们要描述宇宙的起源,广义相对论就必须被一个更完备的理论取代。人们期望,即便广义相对论不崩溃,也需要更完备的理论,因为广义相对理论没有考虑由量子论制约的物质的小尺度结构。我们在第四章提到,因为量子论适用于描述微观尺度的自然,在宇宙大尺度结构的研究中对于多数实际的目的,量子论不大相干。然而,如果你在时间中回溯至足够远,宇宙就和普朗克尺度一样小,即十亿亿亿亿分之一厘米,这是必须考虑量子论的尺度。这样,虽然我们还未拥有一个完备的量子引力论,我们的确知道,宇宙的起源是一个量子事件。因而,正如我们——至少临时地——把量子论和广义相对论相结合以导出暴胀理论,如果我们要回溯得甚至更远并理解宇宙的起源,就必须将我们关于广义相对论所知的与量子论结合。

为了要知道这如何进行,我们需要理解引力翘曲空间和时间的原理。空间翘曲比时间翘曲较易想象。想象宇宙是一撞球台的平坦表面。这台面是一平坦空间,至少在两维如此。如果你在台上滚球,它就沿直线运动,倘若台面有些地方被翘曲或者被弄成凹痕,正如下图所画,那么球就会走弯路。

image

因为在这个例子中撞球台被弯曲到外面的我们能看见的三维中,所以很容易看出它是如何被翘曲的。由于我们不能离开我们自己的时空去观看它的翘曲,较难想象我们宇宙中的时空翘曲。然而,即便我们不能离开并从更大空间的透视来看它,仍然能够检测到曲率。从空间本身之中即能检测到它。想象一只小蚂蚁被限制在台面。即便蚂蚁不能离开台面,它仔细地把距离记述下来,就能检测到翘曲。例如,在平坦的空间中的圆周距离总是比穿越其直径距离的三倍多一些(其真正的倍数为π)。然而,如果蚂蚁取捷径越过环绕画在上图的台面中的井的圆,它将发现其距离比预想的大一些,大于围绕它的距离的三分之一。事实上,如果这口井足够深,蚂蚁会发现周长比穿越它的距离还短。对于我们宇宙中的翘曲也同样成立——它以一种可从宇宙内测量的方式,拉伸或压缩空间点之间的距离,改变其几何或者形状。时间的翘曲以类似的方式拉伸或压缩时间间隔。

在我们掌握好这些观念后回到宇宙启始的问题。在牵涉到低速和弱引力的情形下,正如我们这里讨论的,我们可以分别谈论空间和时间。然而,一般而言时间和空间能变成互相纠缠,因此它们的伸缩也牵涉到一定程度的混合。这个混合在早期宇宙中是重要的,并是理解时间开端的关键。

时间开端的问题有点类似世界边缘的问题。在人们认为世界是平坦时,也许会想知道海水是否会从边缘倾泻。这已经被实验检测过:人们可以围绕着世界旅行,而并未掉下来。当人们意识到世界不是一块平板,而是一个弯曲的面时,在世界边缘会发生何事的问题就已被解决了。然而,时间似乎像一个模型铁轨。如果它具有开端,那就应该存在某者(即上帝)使火车行驶。尽管爱因斯坦的广义相对论把时间和空间统一成时空,并涉及到空间和时间的某种混合,时间仍然有异于空间,而且要么具有开端和终结,要么无限地流逝。然而,一旦我们将量子论效应加到相对论之上,在极端的情形下发生的弯曲可到达如此巨大的程度,以至于时间就像空间的另一维那么行为。

在早期宇宙——当宇宙小到足够让广义相对论和量子论一起制约之时——有效地存在四维空间而不存在时间。这意味着,当我们提及宇宙的“启始”,我们正位于微妙的问题之边缘,即当我们向极早期宇宙回溯时,我们所知的时间并不存在!我们必须接受,我们通常的空间和时间观念不适用于极早期宇宙。这超出我们的经验,却未超出我们的想象或数学。如果在早期宇宙中所有四维都如空间那样行为,对于时间的启始会发生什么?

意识到时间可象空间的另一方向那么行为意味着,以一种类似我们可以摆脱世界边缘的方式,人们可以摆脱时间有个启始的问题。假设宇宙的启始象地球的南极,纬度取时间的角色。随着人们往北运动,代表宇宙尺度的等纬圈将膨胀。宇宙在南极作为一点启始,但是南极和任何其它点都非常象。询问在宇宙启始之前发生什么成为无意义的问题,因为在南极之南不存在任何东西。在这个图像中,时空没有边界——同样的自然定律在南极正如在他处一样成立。类似地,当人们将广义相对论和量子论相结合时,关于在宇宙开端之前发生什么的问题就变得无意义了。历史必须是无边界的闭合面的思想被称为无边界条件。

多少世纪来,包括亚里士多德在内的许多人相信,宇宙必须一直存在以避免它如何开始的问题。其他人相信宇宙有一开端,并以此作为上帝存在的一个论证。意识到时间象空间那么行为呈现了一个新的选择。它不仅排除了对宇宙具有开端的长期的异议,而且意味着宇宙的启始由科学定律来制约,而不必由某位神来启动。

如果宇宙的起源是一个量子事件,那么费恩曼的历史求和就应该准确地描述它。然而,将量子论应用到整个宇宙——这里观察者是被观察的系统的部分——是难处理的。在第四章我们看到射到一个具有两道缝隙的屏幕的物质粒子如何象水波那样显示干涉条纹。费因曼指出这是由于粒子不具有唯一的历史引起的。也就是说,当它从始点a运动到某个终点b时,它不采取一个确定的路径,而是同时采取连接这两点的所有可能的路径。从这个观点看,例如,因为粒子可同时穿过两缝而和它本身干涉,所以干涉没有什么惊讶之处。将之应用于粒子运动,费恩曼的方法告诉我们,为了计算任何特别终点的概率,我们必须考虑粒子从它起点到那个终点的可能遵循的所有可能历史。人们也能用费恩曼方法来计算观测宇宙的量子概率。如果它们被应用于宇宙整体,不存在点a,这样我们就将所有满足无边界条件和结束于我们今天观测的宇宙的所有历史迭加起来。

在这个观点中,宇宙自发出现,以所有可能的方式开始。其中的大多数对应于其它宇宙。那些宇宙中的一些类似于我们的,而大多数非常不同。它们不仅是细节不同,诸如猫王是否英年早逝或者芜菁是否为一种餐后的甜点,正相反它们甚至在自然的表观定律上不同。事实上,存在许多拥有许多不同族物理定律的宇宙。许多人将这个观念故弄玄虚,有时称作多宇宙概念,但这些只是费恩曼历史求和的不同表达。

为了摹想这个,让我们改动一下爱丁顿气球比喻,而把膨胀的宇宙认为是泡的表面。那么,我们的宇宙自发量子创生的图像,有点象在沸水中蒸气泡的形成。许多微小气泡出现,然后再次消失。这些代表膨胀但在其仍然处于微观尺度时塌缩的微宇宙。这些代表可能的另外的宇宙,但由于它们未能维持足够久使得星系和恒星,更不用说智慧生命得以发展,所以不太有趣。然而这些小泡泡中的一些会长的足够大,使得它们避免塌缩。它们将以不断增加的速度继续膨胀,而形成我们能看到的蒸气泡。这些对应于开始以不断增加的速度膨胀的宇宙——换言之,即是处于暴胀状态的宇宙。

正如我们说过的,由暴胀引起的膨胀不会是完全均匀的。在历史求和中,只存在一个完全均匀和规则的历史,而它具有最大的概率,但是其它许多稍微不规则的历史将具有几乎同样大的概率。这便是为何暴胀预言,早期宇宙可能稍许不均匀,这对应于在cmbr中被观测到的温度小变化。早期宇宙中的无规性是我们的福气。为什么?如果你不想从牛奶中分离出乳酪,均匀性则是好的,但一个均匀宇宙令人厌烦。因为在早期宇宙中,如果某些区域具有比它处稍高的密度,那和它周围相比,额外密度的引力吸引会减缓那个区域的膨胀,所以无规性很重要。随着引力缓慢地将物质拉近,它最终能使它塌缩形成星系和恒星,后者能导致行星,而且至少在一种场合导致人。这样仔细地看天空微波图。它是宇宙中一切结构的蓝图。我们是极早期宇宙的量子涨落的产物。如果一个人是宗教人士,他可以说上帝的确掷骰子。

这个观念导致一种和传统的概念根本不同的宇宙观,要求我们调整思索宇宙历史的方式。为了在宇宙学中作预言,我们需要计算在此刻整个宇宙的不同状态的概率。在物理学中,人们通常对一个系统假定某一初始态,利用有关的数学方程向时间的前方演化。给定一个时刻一个系统的态。人们试图计算在以后一个时刻该系统处于某一不同的态的概率。宇宙学中通常是假定宇宙有一单独的明确的历史。人们可以利用物理学定律去计算这个历史如何随时间发展。我们将此称作宇宙学的“从底到顶”方法。

然而,由于我们必须考虑正如表达成费恩曼历史求和的宇宙量子性质,宇宙现在处于一个特别的态的概率幅度由将来自所有满足无边界条件和结束于问题中的态的历史迭加而获得。换言之,在宇宙学中人们不应该从底往上遵循着宇宙的历史,因为那假定了存在一个单独的历史,具有明确定义的起点和演化。相反地,人们要从顶到底地跟随历史,从现时刻回溯。某些历史比其它的可能性更大,而求和通常被一个单独历史所支配,这个历史开始于宇宙的创生而完成于正被考虑的态。然而,对于宇宙在此刻的不同的可能的态存在不同的历史。这就导致宇宙以及因果之间关系的根本不同的观点。对费恩曼求和贡献的历史没有独立的存在,而依赖于什么被测量。我们用自己的观测来创造历史,而非历史创生我们。

宇宙不具有一个唯一的独立于观察者的历史的思想似乎和我们知道的某些事实矛盾。也许存在一个历史,其中的月亮是羊乳酪做的。但是我们观察到的月亮不是乳酪做的,耗子不愿听到这个消息。因此在其中的月亮是乳酪做的历史对我们宇宙的现态没有贡献,尽管它们也许对其它的有贡献。这听起来象是科幻小说,但它不是。

从顶到底方法的一个重要含义是,自然的表观定律依赖于宇宙的历史。许多科学家相信存在一个单独的理论,该理论解释那些定律还有自然的物理常数,诸如电子的质量或者时空的维数。但是从顶到底宇宙学要求自然的表观定律对于不同历史而不同。

考虑宇宙的表观维度。根据m理论,时空具有十个空间维度的一个时间维度。其思想是空间的七个维度被卷缩到我们觉察不到的那么小,给我们留下错觉以为所有存在的只是余下的三个大的我们熟悉的维度。m理论的未能解决的核心问题之一是:在我们宇宙中为何不能有多于三个的大的维度,以及为何不能有任何数目的维度被卷缩?

许多人愿意相信,存在某种机制使空间维度除了三个以外都自发卷缩。另外的可能是,或许所有的维度都从微小启始,但是因某种可理解的原因,三个空间维度膨胀了,而其余的没有。然而,似乎没有动力学原因让宇宙显得是四维的。相反地,从顶到底的宇宙学预言大的空间的维度的数目不能由任何物理原理确定。对于从零到十的大空间维度的数目都有量子概率幅度。费恩曼求和允许所有这一切,允许宇宙的每一种可能历史。然而,观察到我们宇宙具有三个大的空间维度选取出具有被观测的性质的历史的亚类。换言之,宇宙具有多于或少于三个大空间维度的量子概率是不相关的,因为我们已经确定我们是处于一个具有三维大空间维度的宇宙中。这样,只要对于三个大空间维度的概率幅度不是准确为零,它与其它数目维度的概率幅度相比较,不管多么小都没关系。它就象问现任教皇是中国人的概率幅度。我们知道他是位德国人,即使他是中国人的概率更高,因为中国人比德国人多。类似地,我们知道我们的宇宙展现三个大的空间维度,因此即使其它数目的大空间维度也许具有更大的概率幅度,我们只对具有三维的历史感兴趣。

卷缩的维度是怎么回事呢?回忆一下,在m理论中,余下的卷缩维度,内空间的精确形状既确定诸如电子电荷的物理量的值,又确定基本粒子之间相互作用,也就是自然的力的性质。如果m理论只允许卷缩的维度取一种形状,或者允许一些,但是其中除了一种都被某种手段排除掉,只给我们留下自然的表观定律的一种可能性,那么事情的结果就很漂亮。相反地,对于也许多达10的500次方种不同的内空间都拥有概率幅度,每种内空间都导出不同的定律和不同的物理常数值。

如果人们从底向上建立宇宙的历史,就没有理由让宇宙应终止于对应于我们实际观测到的粒子相互作用,即(基本粒子相互作用)标准模型的内空间。但在从顶到底的方法中,我们接受具有所有可能内空间的宇宙存在。在一些宇宙中电子具有高尔夫球的重量,以及引力比磁力更强。标准模型以及其所有参数适用于我们的宇宙。人们可以计算在无边界条件上导致标准模型的内空间的概率幅度。如同存在具有三个大空间维度的宇宙的概率一样,因为我们已经观察到标准模型描述我们的宇宙,所以这个概率相对于其它可能性的幅度是多小没有关系。

我们在这一章描述的理论是可检验的。在较早的例子中,我们强调了对于极端不同的宇宙,诸如那些具有不同数目的大空间维度,其相对概率幅度没有关系。然而,对于邻近(即相似)的宇宙的相对概率幅度是重要的。无边界条件意味着,完全光滑地启始宇宙的历史拥有最高的概率幅度。对于更无规的宇宙其幅度被减少。这表明早期宇宙曾经是几乎光滑的,但具有小无规性。正如我们提到过的,我们能在从天空的不同方向来的微波的微小变化中观测到这些无规性。人们已经发现它们和暴胀理论一般要求完全相符;然而,需要更精密的测量去把从顶到底理论和其它理论辨别开来,并且要么支持要么拒绝。这些很可能在将来用卫星来实施。

几百年前,人们认为地球是唯一的,并位于宇宙的中心。我们今天知道在我们的星系中存在几千亿颗恒星,其中很大的百分比拥有行星系统,以及存在几千亿个星系。本章描述的结果指出,我们的宇宙本身也是许多宇宙中的一个,而且其表观定律不是被唯一确定的。那些希望终极理论,即万物理论能预言日常物理的性质的人,对此一定非常扫兴。我们不能预言诸如大的空间,或者确定的我们观察的物理量(例如电子和其它基本粒子的质量和荷)的内空间的维度的具体特征。我们反而使用那些数去选择那种历史对费恩曼求和贡献。

我们似乎正处于科学史的临界点,此刻必须变更我们有关目标以及什么使物理理论可被接受的观念。看来自然表观定律的基本的数,甚至形式并非由逻辑或物理原则所要求。参数可自由采用许多值,以及定律可采用任何导致一个自洽的数字理论的形式,而且在不同的宇宙中,它们的确采用不同的值和不同的形式。那可能不满足我们人类的欲求——我们是特殊的,或者我们想发现容纳所有物理定律的优雅集合。但那也许正是自然的方式。

似乎存在可能宇宙的极大量风景。然而,正如我们将在下一章看到的,象我们这样的生命在其中能存在的宇宙很稀罕。我们生活在其中生命是可能的一个宇宙中,然而如果宇宙只要稍微不同,象我们这样的生命便不存在。从这种微调我们可得什么结论?这是宇宙归根到底是由一位仁慈的造物者设计的证据吗?或者科学会提供另外的解释吗?